MedMarket Future: Body-Machine; Diabetes

MedMarket Future:
Body-Machine: The interface between us and technology.

We are learning to listen to and interact with our body’s systems to ameliorate disease and trauma.

    • At the Wyss Center, a Swiss research institute, researchers applied functional near-infrared spectroscopy to create a brain-computer interface that enables patients with locked-in syndrome to communicate. The system is based on metabolic changes and was piloted on four patients with amyotrophic lateral sclerosis (ALS).
    • Engineers at the University of California San Diego and La Jolla-based startup Nanovision Biosciences Inc. have developed a retinal prosthesis using nanotechnology and wireless electronics that is intended to enable neurons in the retina to respond to light. The research has been tested on rat retina with a prototype of the device in vitro.
    • In an unrelated study in a rat model, Italian researchers reporting in Nature Materials developed an organic photovoltaic material annealed to the retina on a substrate of silk to convert light into current that is directly adapted by the brain to accept the signal.
    • Researchers at Stanford University have developed stretchable conductive electrodes to enable a flexible interface with brain implants and muscle stimulators. The technology has not yet been tested in animal models.

Diabetes: Wide-ranging advances in the study and treatment of diabetes are driven by huge clinical and economic need.

The body-machine of diabetes is the ‘artificial pancreas’, already FDA approved and available, which mechanically compensates for T1 diabetic symptoms, while the future nears for cellular and non-device interventions aspiring to reverse or cure.

    • In work published in Frontiers in Immunology, City of Hope researchers using autologous hematopoietic stem cell transplantation demonstrated increased C-peptide levels and induced insulin independence in patients with Type I diabetes.
    • In a study of Type 2 diabetes, Joslin Diabetes Center have identified the mechanism that prevents successful proliferation of beta cells in response to insulin resistance. The mechanism blocks the body’s own attempt to correct insulin resistance.
    • Researchers at Sweden’s Umeå Centre for Molecular Medicine have used optical projection tomography to produce 3D visualization of the pancreas that maps the three-dimensional distribution and volume of the insulin-producing cells in the pancreas. The data generated will enhance diabetes research, as in “planning of stereological analyses, in the development of non-invasive imaging techniques or various types of computational modelling and statistical analyses”.

MedMarket Future: Graphene, Advanced Materials, Organ-on-a-chip

Proliferation of graphene applications

The nature of graphene’s structure and its resulting traits are responsible for a tremendous burst of research focused on applications.

  • Find cancer cells. Research at the University of Illinois at Chicago showed that interfacing brain cells on the surface of a graphene sheet allows the ability to differentiate a single hyperactive cancerous cell from a normal cell. This represents a noninvasive technique for the early detection of cancer.
  • Graphene sheets capture cells efficiently. In research similar to that U. Illinois, modification of the graphene sheet by mild heating enables annealing of specific targets/analytes on the sheet which then can be tested. This, too, offers noninvasive diagnostics.
  • Contact lens coated with graphene. While the value of the development is yet to be seen, researchers in Korea have learned that contact lenses coated with graphene are able to shield wearers’ eyes from electromagnetic radiation and dehydration.
  • Cheaply mass-producing graphene using soybeans. A real hurdle to graphene’s widespread use in a variety of applications is the cost to mass produce it, but Australia’s CSIRO has shown that an ambient air process to produce graphene from soybean oil, which is likely to accelerate graphenes’ development for commercial use.

Materials

Advanced materials development teams globally are spinning out new materials that have highly specialized features, with the ability to be manufactured under tight control.

  • 3D manufacturing leads to highly complex, bio-like materials. With applications across many industries using “any material that can be crushed into nanoparticles”, University of Washington research has demonstrated the ability to 3D engineer complex structures, including for use as biological scaffolds.
  • Hydrogels and woven fiber fabric. Hokkaido University researchers have produced woven polyampholyte (PA) gels reinforced with glass fiber. Materials made this way have the structural and dynamic features to make them amenable for use in artificial ligaments and tendons.
  • Sound-shaping metamaterial. Research teams at the Universities of Sussex and Bristol have developed acoustic metamaterials capable of creating shaped sound waves, a development that will have a potentially big impact on medical imaging.

Organ-on-a-chip

In vitro testing models that more accurately reflect biological systems for drug testing and development will facilitate clinical diagnostics and clinical research.

  • Stem cells derived neuronal networks grown on a chip. Scientists at the University of Bern have developed an in vitro stem cell-based bioassay grown on multi-electrode arrays capable of detecting the biological activity of Clostridium botulinum neurotoxins.
  • Used for mimicking heart’s biomechanical properties. At Vanderbilt University, scientists have developed an organ-on-a-chip configuration that mimics the heart’s biomechanical properties. This will enable drug testing to gauge impact on heart function.
  • Used for offering insights on premature aging, vascular disease. Brigham and Women’s Hospital has developed organ-on-a-chip model designed to study progeria (Hutchinson-Gilford progeria syndrome), which primarily affects vascular cells, making this an affective method for the first time to simultaneously study vascular diseases and aging.